سلام بنده دیتاستی دارم ک اندازه ورودی ها متفاوته ی تصویر مثلا 100 در 50 یکی دیگ 500 در 200 از طرفی باید توی لایه کانولووشن مقدار بدیم مثلا بگیم 32*32 در این مورد چطوری باید پیاده سازی رو انجام داد؟
Create the neural network
def conv_net(x_dict, n_classes, dropout, reuse, is_training):
# Define a scope for reusing the variables
with tf.variable_scope('ConvNet', reuse=reuse):
    # TF Estimator input is a dict, in case of multiple inputs
    x = x_dict['images']
    # MNIST data input is a 1-D vector of 784 features (28*28 pixels)
    # Reshape to match picture format [Height x Width x Channel]
    # Tensor input become 4-D: [Batch Size, Height, Width, Channel]
    x = tf.reshape(x, shape=[-1, 28, 28, 1])
    # Convolution Layer with 32 filters and a kernel size of 5
    conv1 = tf.layers.conv2d(x, 32, 5, activation=tf.nn.relu)
    # Max Pooling (down-sampling) with strides of 2 and kernel size of 2
    conv1 = tf.layers.max_pooling2d(conv1, 2, 2)
    # Convolution Layer with 64 filters and a kernel size of 3
    conv2 = tf.layers.conv2d(conv1, 64, 3, activation=tf.nn.relu)
    # Max Pooling (down-sampling) with strides of 2 and kernel size of 2
    conv2 = tf.layers.max_pooling2d(conv2, 2, 2)
    # Flatten the data to a 1-D vector for the fully connected layer
    fc1 = tf.contrib.layers.flatten(conv2)
    # Fully connected layer (in tf contrib folder for now)
    fc1 = tf.layers.dense(fc1, 1024)
    # Apply Dropout (if is_training is False, dropout is not applied)
    fc1 = tf.layers.dropout(fc1, rate=dropout, training=is_training)
    # Output layer, class prediction
    out = tf.layers.dense(fc1, n_classes)
return out